Knockdown of long non-coding RNA XIST increases blood–tumor barrier permeability and inhibits glioma angiogenesis by targeting miR-137

نویسندگان

  • H Yu
  • Y Xue
  • P Wang
  • X Liu
  • J Ma
  • J Zheng
  • Z Li
  • H Cai
  • Y Liu
چکیده

Antiangiogenic therapy plays a significant role in combined glioma treatment. However, poor permeability of the blood-tumor barrier (BTB) limits the transport of chemotherapeutic agents, including antiangiogenic drugs, into tumor tissues. Long non-coding RNAs (lncRNAs) have been implicated in various diseases, especially malignant tumors. The present study found that lncRNA X-inactive-specific transcript (XIST) was upregulated in endothelial cells that were obtained in a BTB model in vitro. XIST knockdown increased BTB permeability and inhibited glioma angiogenesis. The analysis of the mechanism of action revealed that the reduction of XIST inhibited the expression of the transcription factor forkhead box C1 (FOXC1) and zonula occludens 2 (ZO-2) by upregulating miR-137. FOXC1 decreased BTB permeability by increasing the promoter activity and expression of ZO-1 and occludin, and promoted glioma angiogenesis by increasing the promoter activity and expression of chemokine (C-X-C motif) receptor 7b (CXCR7). Overall, the present study demonstrates that XIST plays a pivotal role in BTB permeability and glioma angiogenesis, and the inhibition of XIST may be a potential target for the clinical management of glioma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144

Blood-tumor barrier (BTB) limits the delivery of chemotherapeutic agent to brain tumor tissues. Long non-coding RNAs (lncRNAs) have been shown to play critical regulatory roles in various biologic processes of tumors. However, the role of lncRNAs in BTB permeability is unclear. LncRNA TUG1 (taurine upregulated gene 1) was highly expressed in glioma vascular endothelial cells from glioma tissues...

متن کامل

Long Non-coding RNA XIST Promotes Glioma Tumorigenicity and Angiogenesis by Acting as a Molecular Sponge of miR-429

Glioma is a worldwide malignancy, which displays significantly active metastasis and angiogenesis. Interaction between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) has been shown to play crucial role in regulating tumor properties. However, the potential of lncRNA X-inactive specific transcript (XIST) to function as a miRNA regulator and its relevance in glioma tumorigenicity and angio...

متن کامل

Long non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway

Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...

متن کامل

The Long Non-Coding RNA XIST Interacted with MiR-124 to Modulate Bladder Cancer Growth, Invasion and Migration by Targeting Androgen Receptor (AR).

BACKGROUNDS/AIMS Long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) is involved in the progression of several tumors. The interaction between lncRNA and miRNA or miRNA's target genes is reported to play crucial roles in malignancy. In addition, Androgen receptor (AR) is considered to be involved in bladder cancer progression. In this study, we investigated the role of XIST in hu...

متن کامل

The Role of HOTAIR/miR-148b-3p/USF1 on Regulating the Permeability of BTB

Homeobox transcript antisense intergenic RNA (HOTAIR), as a long non-coding RNA (lncRNA), has been considered to play critical roles in the biological properties of various tumors. The purposes of this study were to investigate the role and possible molecular mechanisms of HOTAIR in regulating the permeability of blood tumor barrier (BTB) in vitro. Our present study elucidated that the expressi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017